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Abstract. Real data from manufacturing processes are essential to create useful 

insights for decision-making. However, acquiring real manufacturing data can 

be expensive and time consuming. To address this issue, we implement a virtual 

milling machine model to generate machine monitoring data from process 

plans. MTConnect is used to report the monitoring data. This paper presents 1) 

the characteristics and specification of milling machine tools, 2) the architecture 

for implementing the virtual milling machine model, and 3) the integration with 

a simulation environment for extending to a virtual shop floor model. This 

paper also includes a case study to explain how to use the virtual milling 

machine model for predictive analytics modeling. 
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1 Introduction 

The application of data analytics in manufacturing is one of the most promising 

methods to help manufacturers improve the productivity of their systems by saving 

money and time or reducing process flaws. Collecting manufacturing data is critical to 

make use of the different techniques available for data analytics. In the framework 

described in [1], the authors described the importance and the necessity of data 

collection to run data analytics in the manufacturing area, which continuously 

generates large amounts of data [2]. Data can be in different formats that can be 

defined as structured or unstructured. The suggested framework needs to be able to 

understand these different data formats to analyze the data. In particular, modern 

machines are able to provide real-time data to monitor the values of operating 

parameters. This data can be specified in the MTConnect standard [3] in order to 

facilitate the communication between equipment and software applications. 



 

 

However, since acquiring data is still expensive and time consuming, simulation 

approaches that can generate data at a lower cost need to be explored.  Simulation 

approaches have already allowed manufacturers to reduce costs and time at the 

factory level [4] by generating simulated data that they can analyze to improve the 

performance of their systems. While creating virtual machine models can allow 

manufacturers to generate simulated process data, using these models together will 

lead to a virtual shop floor model at the production level. 

Combining simulation and data analytics at the process level can lead to a process 

efficiency improvement at a lower cost. In [5], authors have compared Bayesian 

Networks and Artificial Neural Networks for running analytics on real and simulated 

data with efficient results to predict the output values.  

This paper introduces a virtual milling machine model to generate machine 

monitoring data from a process plan. In addition to the model, we also present an 

agent-based model including a machine-state-chart diagram. We integrate our virtual 

machine model into the agent model to use it in a simulation environment. We show 

how the agent-based model and the virtual machine model can be embedded in a 

shop-floor-level simulation environment combining discrete event and agent-based 

models. Finally, we illustrate how data analytics can be applied. 

This paper is organized as follows: Section 2 introduces the characteristics and 

specifications of the virtual milling machine model. Section 3 presents the virtual 

milling-machine model, and its combination with an agent-based model into a 

simulation environment. Section 4 shows how a manufacturer can leverage this 

combination and use the generated data to run analytics for system improvement. 

2 Specifications of the Virtual Milling Machine Model 

In this section, we present the specification of input and output data for our virtual 

model. We also introduce the equations needed to compute the power metrics related 

to the milling process and finally show the state chart that we define for representing 

the behavior of a machine and include our model in a simulation environment. 

2.1 Input data and output data: from STEP-NC program file to MTConnect 

document 

We identify an ISO 14649 STEP-NC [6] program file (henceforth referred to as 

STEP-NC file) and MTConnect document respectively as input and output data of our 

virtual model. In [7], authors underline that a STEP-NC-based approach is promising 

for digital manufacturing while authors emphasize MTConnect capabilities to 

improve the interoperability of machine tools in [8]. Numerical control (NC) 

programs allow manufacturers to automatically control machine tools. The use of NC 

machines and computers in manufacturing led to the development of computer-aided 

manufacturing (CAM) where computers interpret CAM files to send a set of 

instructions to the NC machines in order to achieve the production defined in the 

original CAM file.  



 

 

MTConnect is an XML-based [9] standard to represent machine monitoring data. 

This standard aims to provide interoperability so that manufacturers can monitor 

various brands and models of Computer Numerical Control (CNC) machines through 

a common interface. By using this standard for the output data, we ensure that the 

data will have a well-known structure that facilitates the communication for later uses.  

2.2 Machine tool specification for kinematics and dynamics 

To virtually model a milling machine, we compute kinematics (e.g., velocity and 

position) and dynamics (e.g., force and power) corresponding to the events and 

movements of the machine tool. A STEP-NC program specifies a sequence of 

machining operations, and is used to create an NC program in the ISO 6983 (G-Code) 

format [10]. Meanwhile, an MTConnect document generates continuous snap shots of 

a machine tool’s actions and events using time as reference. Thus, for every 

instruction of the NC program, we need to compute the corresponding metrics of the 

machine tool. Computing these metrics requires equations that are derived from 

physical model-based analysis of machine tool metrics. We make a calculation of 

power, which indicates the amount of energy consumed per unit-time.  

First, we defined a position function by deriving theoretical equations presented in 

[11]. This function is presented in Equation (1) assuming that linear velocity has a 

trapezoidal profile. 
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where L: length from a previous point (mm), t: the current time (ms), ta: acceleration 

time (ms), ts: steady-state time (ms), td: deceleration time (ms), vi: velocity on each 

axis (m/s). 

Using this function, our virtual machine model computes the kinematics that 

include linear-axial positions as a function of time. These position data can be used to 

detect cutting or non-cutting motions that occur between a work piece and a cutting 

tool. The characterization of the motions contributes to determine the power 

consumption.  

Second, our virtual model computes the machine tool dynamics using theoretical 

equations introduced in [12]. The power profile of a single NC code command for 

linear movement consists of acceleration, steady and deceleration states. Power 

during the steady state varies for cutting and non-cutting motions. During the cutting 

motion, the power corresponds to the cutting power, which is caused from cutting 

forces, plus the idle power. We use a physics-based equation, as expressed in 

Equation (2), to calculate the cutting forces. Equations (3) and (4), respectively, 

present the linear-axial and rotary-axial power for a milling machine. Units can be 

obtained in the reference paper [12]. 
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2.4 Machine states 

To integrate our virtual milling machine model inside an agent-based model, we 

develop a state chart that represents the different states of the machine. The model is 

presented below in Figure 1.  
 

 

Figure 1. State chart diagram for a machine 

The default machine state is the idling state. As soon as a batch arrives 

(represented by the transition batchReception in the figure), the machine goes to the 

next state called batchSetup. This state models the required machine setup for 

processing the batch. Once the batch is setup, the machine goes to the partSetup state 

where the machine sets up each part to execute the needed operations. The next state 

called machining represents the milling process. Once the operations have been 

executed on the part, the machine goes to the partEjection state that models unloading 

of the part. After this state, two alternative paths can be taken by the machine in the 

state chart. If there are still parts to process in the batch, the machine goes back to 

partSetup. In the other case, the machine goes to the last state, which is the 

batchEjection state, when the batch unload step is modeled. After a batch has been 

ejected, the machine goes back to the idling state waiting for a new batch. 



 

 

3 Description of the virtual machine model architecture and 

integration in an agent-based model 

In the previous section, we have shown the specifications that define our virtual 

machine model. In this section, we introduce the architecture of the virtual machine 

model that makes it possible to generate machine monitoring data virtually. We then 

present the integration of the virtual model inside an agent-based model. We finally 

discuss the benefits of this integration. 

3.1 Architecture of the virtual machine model 

 

Figure 2 illustrates the process flow (including involved tools and generated 

outputs for each step) followed by the virtual milling machine model to generate 

MTConnect data. The virtual milling machine model takes, as an input, a STEP-NC 

file. The model parses and interprets this file using a toolkit for Parts 10, 11, and 111 

(related to milling process data and tools) that is written in C++ and referred to as ISO 

14649 Toolkit in the picture. This toolkit has been developed at the National Institute 

of Standards and Technology (NIST) for programing with ISO 14649, Parts 10 and 

11, and is being applied to study different ISO 10303 [13] application-protocol file 

characteristics and their interpretation [14]. Using this toolkit, we can generate the 

sequence of G-Code instructions. We developed a physics-based modeler that we 

have integrated in our virtual model to transform the G-Code instructions into 

machine tool kinematics and dynamics. 

 

 

Figure 2. Step-by-step procedure of the virtual milling machine model 

The computed movement metrics are length, acceleration, velocity, time, cutting, 

force and power. Computations are based on the equations introduced in the previous 

section. You can see below, in Figure 3, a class diagram representing the movement 

structure. For brevity, we show an overview of the class diagram. We define an 

abstract class called Movement. This class is extended by another abstract class called 

StraightMovement that is itself an extension by two classes called 

TraverseStraightMovement and FeedStraightMovement. These two last classes allow 

representation as two different movement types for the milling machine. The schema 

can be extended to represent additional movement types in the future. All the 

computed metrics are also represented as classes and are aggregated to the Movement 

class. The class Power is abstract and is extended by two classes: TraversePower and 

FeedPower that will represent the power depending on the movement type. The 

physics-based modeler instantiates this structure during the computations and 

generates a Movement collection that represents the machine tool kinematics and 

dynamics. 



 

 

 

 

Figure 3. Class diagram representing the structure of a movement 

To generate an MTConnect file corresponding to this STEP-NC file, we generate 

time series data representing the current position of the machine tool and the 

consumed power of the milling machine. Using the kinematics and dynamics that we 

generated in the previous step and an MTConnect generator that we developed as part 

of the virtual machine model, we generate MTConnect data representing the tool 

position and the consumed power every 100 milliseconds. We store these data in an 

MTConnect agent, which is a web service that collects the generated MTConnect 

samples. This MTConnect agent provides query functions that can be called to get 

specific sets of data previously stored. 

3.2 Combination of the virtual machine model into an agent-based model 

using a simulated environment 

To run our virtual machine model in a simulation environment, we integrate this 

virtual machine model in an agent–based model. The software environment called 

AnyLogic [15] allows us to extend the states and the transitions of a state chart using 

Java code. While implementing the state chart in an agent-based model, we can call 

virtual machine model functions by importing a Java ARchive (JAR) file that contains 

the needed functions. We first implement the state chart introduced in section 2.4 in 

the agent-based model. We extend this state chart by implementing additional Java 

code to initialize the parameters needed for the virtual machine model functions. 

During the batchSetup state, we get the time needed by the machine to set up the 

batch as well as the power consumed during this step by reading the machine 

specification described using XML. By following the same steps during the partSetup 

state, we generate the values of the machine parameters that depends on the properties 

of the material used for this batch. During the machining state, we include the 

parameters values inside a STEP-NC file given as an input to the virtual machine 

model. Using the appropriate functions, we can compute the machining time and the 

consumed power corresponding to the STEP-NC file given as input. In partEjection 



 

 

state and batchEjection state, we collect time and power consumed to achieve these 

ejection operations by reading the machine specification as we do for the setup states. 

All the values of time and power are subjects to a standard deviation to represent the 

uncertainty at a real machine level. Once a batch has been processed (after the 

batchEjection state), we generate Comma Separated Values (CSV) and MTConnect 

output files that gives the time and the power consumed by the milling machine.  

3.3 Benefits 

This approach provides benefits for manufacturing simulation. The simulation 

applications reviewed in [16] illustrate the interest in simulation in the manufacturing 

area. While simulations for manufacturing operations, such as planning or scheduling 

or real-time control, seem to be the most important trend, generating machine-

monitoring data can lead to a more accurate simulation. The agent-based model 

implementation allows manufacturers to use the milling model in a very easy way 

since the agent-based model can be used directly to represent one machine. Thus, the 

virtual milling model generates data during the simulation representing real machine 

behavior. Moreover, agent updates are regularly possible. Collecting real data 

punctually makes it possible to calibrate the virtual model. It also enables including 

realistic noise in the simulated data to give more accuracy to the virtual model. 

Finally, the agent-based model can be improved by integrating disturbances such as 

machine failure in the state chart.  

Extending this approach, providing a library of agents can allow manufacturers to 

choose the machine model to represent the machine involved in their manufacturing 

systems. Updates on virtual machine models only require a library update. A 

manufacturer can use an agent from the library in the simulation without really 

knowing how the integrated virtual model is implemented. Finally, different agents 

representing the same machine can provide different capabilities depending on the 

studied problem such as power consumption, flow capabilities and material 

consumption by integrating a different virtual model. 

4 Use Case 

In this section, we will illustrate how to use the agent-based model to generate 

data. We will first present the specification of our use case, and then show the 

implementation in the simulation environment. The last part introduces the 

application of regression analysis to generate an analytical model. 

4.1 Use case scenario 

We define a scenario to represent a milling machine in the simulated environment. 

In this scenario, a milling machine tool manufactures a steel part, as shown in Figure 

4. The process parameters – feed rate, spindle speed, and cutting depth – control the 

tool path strategies that are necessary to make the given machining features. We 



 

 

assign the three process parameters randomly using a uniform distribution within the 

ranges given in Table 1. This process plan decision generates STEP-NC files. Each 

STEP-NC file is assigned to produce one part. 
 

 

Figure 4. An example of a milling part 

Table 1.  Process plan data  

Process parameter Unit Lower bound Upper bound 

Feedrate mm/s 30 90 

Spindle speed rad/s 75.4 226.2 

Cutting depth  mm 2.5 3.5  

4.2 Implementation results 

Given the process plan scenario in Section 4.1, we instantiate the agent-based model 

in a process flow model to collect MTConnect data. This process flow represents a 

flow of batch coming to the milling machine. Our machining model generates 

MTConnect documents for every part of the batch. To reproduce a real machine 

behavior, using an identical set of process parameters leads to different power values 

representing the variation that can occur in a real machine (±10 % uniform-random 

deviation during feed movement, and ±5 % uniform-random deviation during traverse 

movement). Using the agent-based model, we generate MTConnect time series data 

after every part ejection while running the simulation. 

 

Figure 5. Example of simulation at the process flow and the agent levels.  



 

 

Figure 5 shows the implementation of the scenario in Anylogic at the process and 

agent levels. The MTConnect document provides the following set of information: 

x_axis_position, x_axis_wattage, y_axis_position, y_axis_wattage, z_axis_position, 

z_axis_wattage, c_axis_wattage, electric_wattage and coolant_wattage.  

4.3 Predictive modeling using generated data 

Using the simulated data, we are able to run regression analysis to generate an 

analytical model by using machine learning techniques. This analytical model can 

then be used to predict values of the power consumption. After a normalization of the 

data, we train a neural network model with the first 500 samples of our simulated 

data. We give 300 new samples as inputs of the trained model and compare the 

outputs of the model and the simulated data generated by our virtual machine model 

using the same input parameters. Figure 6 represents the comparison between the 

simulated total power (X-axis) and the predicted total power (Y-axis).  
  

 

Figure 6. Scatter plot of the simulated and the predicted total power. 

As you can see, the plot shows a slightly curved line showing that the predicted 

data are really close to the simulated data for the same input parameters. The 

coefficient of determination, representing how close the predicted data are to the 

simulated data, is 0.986. By applying this approach and after validation, a 

manufacturer can also use this model to compare the real outputs with the model 

outputs to establish diagnostic on a machine in a manufacturing system. Extending it 

to a full manufacturing system will allow a manufacturer to anticipate the behavior of 

the system in a simulation environment by taking advantage of the simulated data. 

5 Conclusion 

In this paper, we introduce a virtual milling machine model that allows us to 

generate machine-monitoring data in MTConnect format. We show that we can 

integrate this model in a simulated environment to take advantage of the generated 

data and generate a predictive model to finally improve or make a diagnostic on a 

milling process described in a STEP-NC file. In a future work, integration of 



 

 

maintenance and failure in our model can make our generation of data more realistic 

and improve our simulation. Moreover, taking advantage of our model and other 

existing models [17], we will be able to develop a virtual shop floor model.  

 

DISCLAIMER  

No approval or endorsement of any commercial product by NIST is intended or 

implied. Certain commercial software systems are identified in this paper to facilitate 

understanding. Such identification does not imply that these software systems are 

necessarily the best available for the purpose. 
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